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August Median Streamflows in Massachusetts

By Kemell G. Ries llI

Abstract

Since 1981, the U.S. Fish and Wildlife Service has used the August median streamflow as
the summer-time minimum streamflow for maintenance of habitat for biota in New England
streams; however, August median streamflows in Massachusetts were previously not well defined.
This report provides information needed to evaluate the impact of use of this statistic for water-
resources planning and management, and to estimate August median streamflows for ungaged
streams in the State.

August median streamflows were determined for 37 streamflow-gaging stations and 59 low-
flow partial-record stations with all or most of their drainage areas in Massachusetts and virtually
natural flow conditions during low-flow periods. The monthly (August) median streamflows for
the streamflow-gaging stations were determined from the daily mean streamflows for all years
with complete records for August through climatic year 1994. Periods of records ranged from 2 to
81 years. August median streamflows for the low-flow partial-record stations were estimated by
correlation of measured streamflows at the stations with same-day mean streamflows at nearby
gaging stations. The estimates for the low-flow partial-record stations had a median standard error
of 8.71 percent.

Flows in Massachusetts streams were, on average, equal to or less than the August median
streamflow on 16 percent of all days. The Statewide median of the August median streamflow was
0.246 cubic foot per second per square mile; however, the median in the western region was 0.271
cubic foot per second per square mile and the median in the eastern region was 0.197 cubic foot
per second per square mile. A third hydrologic region, the southeast coastal region, encompasses
an area in which surficial geology is entirely stratified drift, and for which data were insufficient to
determine August median streamflows. Because median values in the western and eastern regions
had about a 15-fold range, use of the median for the region to estimate the flow per unit area for
ungaged sites could result in substantial errors.

Weighted-least-squares regression analysis was used with data for the 96 stations to develop
an equation for estimating August median streamflows for ungaged streams with natural flow
conditions. Basin characteristics for the stations were measured from digital data bases.The actual
or equivalent years of record for the stations were used as the weighting factor. The independent
variables included in the equation were drainage area, area of stratified drift divided by total basin
stream length plus 0.1, the difference between the mean basin elevation and the minimum basin
elevation, and an indicator variable for the hydrologic region. The equation explained 95.1 percent
of the variation in August median streamflows for stations used in the analysis. The standard error
of estimate for the equation is 35.4 percent, and the standard error of prediction is 38.3 percent.
Prediction intervals can be constructed for sites with basin characteristics within the ranges of
those used in the regression analysis. The equation is not applicable in the southeast coastal
region.
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INTRODUCTION

In 1981, the U.S. Fish and Wildlife Service (1981) developed a “New England Aquatic Base Flow
Policy” (ABF). The policy recommended use of the August median streamflow as the minimum
streamflow for summertime maintenance of habitat for biota. This minimum streamflow was selected
because “low-flow conditions occurring in August typically result in the most metabolic stress to aquatic
organisms due to high water temperatures and diminished living space, dissolved oxygen, and food
supply” (U.S. Fish and Wildlife Service, 1981). Higher flows than the August median were recommended
at other times of the year, and site-specific studies were recommended where needed.

The ABF has been used for water-resources planning and management at various times by most
New England States. Currently, environmental agencies of the State of Massachusetts [the Department of
Environmental Management, Office of Water Resources (MDEM); the Department of Environmental
Protection, Office of Watershed Management (MDEP); and the Department of Fisheries, Wildlife, and
Environmental Law Enforcement (MDFWELE)] are attempting to develop a uniform policy for water-
resources planning and management. One policy being considered is use of the ABF.

The USFWS recommended that the historical August median be used as the minimum streamflow at
locations where this statistic can be determined from available flow data from unregulated streams. Where
these data are not available, or where streamflows are regulated, an ABF of 0.5 (ft*/s)/mi? of drainage area
was prescribed. The policy provided that alternative minimum streamflows may be accepted by the
USFWS if the applicant or sponsor of a project or activity that would affect streamflows adequately
justifies their use.

The ABF was developed on the basis of an analysis of data for 48 streamflow-gaging stations in
New England. Only those stations with drainage areas of 50 miZ or greater were included in the analysis,
and only seven of the stations were in Massachusetts. Because so few sites used in the ABF analyses are in
Massachusetts, and because most streams where the estimates would be needed have drainage areas less
than 50 mi2, better definition of the August median streamflow for Massachusetts streams was needed for
State environmental agencies to evaluate the potential impact of use of the ABF to maintain minimum
streamflows for biota. If State environmental agencies were to implement policy for planning and
management of water resources, they also would need to be able to determine with reasonable confidence
the unregulated August median streamflow for any Massachusetts stream.

This report describes a study done by the U.S. Geological Survey (USGS), in cooperation with the
MDEM and MDEP, to better define August median streamflows in Massachusetts. The report provides
State environmental agencies information needed to evaluate the potential impact of use of this statistic for
water-resources planning and management, and to estimate August median streamflows for ungaged
streams in the State. The specific purposes of this report are to (1) provide August median streamflows for
sites on virtually unregulated streams in Massachusetts where the medians could be determined from
available data, (2) describe how the August median streamflow per square mile of drainage area varies
throughout the State, and (3) provide an equation that can be used to estimate August median streamflows
for ungaged streams in Massachusetts.

The physical setting of Massachusetts as it relates to variation in August median streamflows are
described, as are the data and methods used in the analyses. An example application of the equation used
for determining August median streamflows for ungaged sites is provided, and limitations for use of the
equation are discussed.

Previous Investigations

The U.S. Fish and Wildlife Service (1981) determined August median streamflows for the 48 sites in
New England by computing the median of the annual series of August monthly mean streamflows for the
period of record at each station. The USFWS then computed the August median streamflow per square
mile of drainage area for each of the 48 sites, and used the average of these medians [0.48 (ft3/s)/mi2],
rounded upward to the nearest one-tenth, as their recommended ABF of 0.5 (ft3/s)/mi2.

2 August Median Streamflows in Massachusetts



In 1987, Charles Ritzi Associates (1987) used data from the same gaging stations as those used by
the USFWS, but computed August median streamflows from the daily mean streamflows for all August
days during the period of record. Charles Ritzi Associates found that the mean of the August median
streamflows computed in this manner was 0.40 (ft3/s)/miz, and the median was between 0.33 and
0.38 (ft3/s)/mi?.

In a subsequent study, Kulik (1990, p. 10) stated that monthly mean streamflows, such as those used
by USFWS to compute August median streamflows, can be substantially skewed by a small number of
intense storm events, causing mean values to be higher than the medians. Kulik stated that “the median is a
more useful statistic than the mean for describing the central tendency” of data with skewed distributions.
Kulik (1990) also hypothesized that August median streamflows in New England varied regionally due to
differences in physiographic basin features and climate. In his study, Kulik used virtually the same stream-
flow database as that used by the USFWS, except he computed August median streamflows for the sites
from the daily mean streamflows for all August days during the period of record, the same method as that
used by Charles Ritzi Associates (1987). Kulik analyzed variation in the streamflows with variation in rain-
fall, slope, land use, and topography, and found statistically significant differences among two physio-
graphic regions. Kulik suggested that separate ABF criteria of 0.6 and 0.3 (ft3/s)/mi? be used for Mountain
Windward and Non-Mountain Windward regions, respectively.

Several investigators have used regression analysis to obtain equations for estimating low-flow
statistics for ungaged New England streams, although none have developed an equation for estimating
August median streamflows (Thomas, 1966; Johnson, 1970; Tasker, 1972; Parker, 1977; Dingman, 1978;
Cervione and others, 1982; Male and Ogawa, 1982; Fennessey and Vogel, 1990; Vogel and Kroll, 1990;
Cervione and other, 1993; Risley, 1994; and Ries, 1994a, 1994b). These investigators found drainage
area—the land area that contributes streamflow to the location on the stream—to be the variable most
highly correlated with low streamflow statistics. Direct or indirect measures of surficial geology (such as
area of stratified drift, area of till, and ground-water factor), and measures of basin relief or elevation also
were highly correlated with low streamflows. Precipitation was highly correlated to low-flow statistics
when data from northern New England are included in the analyses.

Physical Setting

Massachusetts encompasses an area of 8,093 mi? in the northeastern United States. Massachusetts
has a humid climate, with an average annual precipitation of about 45 in. that is fairly evenly distributed
throughout the year. Average annual temperatures range from 50°F in coastal areas to 45°F in the western
mountains. Average monthly temperatures in coastal areas range from about 30°F in February to about
71°F in July, and average monthly temperatures in the western parts of the State range from about 20°F in
January to about 68°F in July (U.S. Commerce Department, National Oceanic and Atmospheric
Administration, 1989). Altitudes range from sea level along the coast to almost 3,500 ft in the western
mountains. Relief generally increases from east to west.

Flow in Massachusetts streams during the summer months comes from ground water discharged
from aquifers in unconsolidated deposits adjacent to the streams, except during and for a short time after
storms. This ground water is termed base flow. High-yielding aquifers usually are in stratified drift, which
are coarse sand and gravel deposits along the valley floors of inland river basins and in coastal areas of
southeastern Massachusetts. In addition to the high-yielding coarse sand and gravel deposits, stratified drift
commonly contains layers of fine sand and clay that yield little water to adjacent streams. The stratified-
drift deposits are usually surrounded by upland areas underlain by till with exposed bedrock outcrops. Till
is an unsorted glacial deposit that consists of material ranging in size from clay to large boulders. Till
yields little water to adjacent streams in comparison to yields from coarse-grained stratified drift. As a
result, during summertime, streams in till areas tend to have less flow per unit of drainage area than
streams in areas of stratified drift, and some small streams in till areas may go dry.
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DETERMINING AUGUST MEDIAN STREAMFLOWS FROM AVAILABLE FLOW DATA

August median streamflows for gaging stations were determined in the manner used by Charles Ritzi
Associates (1987) and Kulik (1990). August daily mean streamflows for all complete Augusts for the
period of record for each station were ordered from highest to lowest, and the streamflow that was equaled
or exceeded 50 percent of the time was determined as the median for the station.

August median streamflows for low-flow partial-record stations (LFPRs) were determined by use of
a mathematical method developed by Hirsch (1982). In this method, termed the MOVE.1 (Maintenance Of
Variance Extension, type 1) method, a mathematical relation is determined between the logarithms-base 10
of streamflow measurements made at a partial-record site and the logarithms-base 10 of same-day mean
streamflows recorded at nearby and hydrologically similar long-term streamflow-gaging stations. The
logarithm of the August median streamflow at the gaging station is then entered into the equation that
defines the relation to determine the corresponding median streamflow for the partial-record site. The
logarithm-base 10 estimate is then exponentiated to obtain the final estimate in units of cubic feet per
second. A thorough explanation of application of the MOVE.1 method is provided by Ries (1994a,

p. 21-24).

Usually the measured streamflows at a partial-record station correlate well with more than one
gaging station. When this happens, MOVE.1 relations can be developed with several gaging stations to
estimate the August median streamflow for a single partial-record station, and multiple estimates will be
obtained. Because these multiple estimates differ, a method was needed to combine the estimates into a
single estimate. Tasker (1975) suggested that the best estimate of a streamflow statistic for a site is that
which has the minimum variance. Tasker showed that by weighting independent estimates of a streamflow
statistic for a site by the variances of the estimates and then averaging the weighted estimates, the resulting
weighted average estimate has variance less than or equal to that of any of the independent estimates.

Hardison and Moss (1972) developed an equation for determining the variance of estimates of 7-day,
T-year low flows that were obtained from an ordinary-least-squares (OLS) regression of the logarithms-
base 10 of base-flow measurements at a LFPR to the logarithms-base 10 of daily mean discharges at a
nearby, hydrologically similar gaging station. The parameters in the equation were the length of record at
the gaging station, the number of base-flow measurements, and the standard error of estimate of the
regression equation. Hardison and Moss’ equation is

V 2 SE 2
_ VR 1 M T.G ( M ) 2
VT’U__M[I+M—3+M—3+[ sa,c) M—3]+b Vgs )]

Vru is the variance of the T-year low streamflow at the ungaged site, in log units;
Vi is the variance of the T-year low streamflow at the gaging station, in log units;
Vg is the variance about the regression line;
M is the number of base-flow measurements;
SET¢ is the standard error of the T-year low-flow at the gaging station, in log units, which equals the
square root of V.
b is the slope of the ordinary-least-squares regression line of relation;
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s is the standard deviation of the logarithms-base 10 of the mean discharges at the gaging station on
the same days the low-flow measurements were made at the ungaged site; and
z is the number of standard deviation units between the mean of the logarithms-base 10 of the
same-day mean discharges at the gaging station and the logarithms-base 10 of the T-year low
streamflow at the gaging station.
Hardison and Moss (1972) noted five assumptions in developing their equation:

1. The lower end of the true relation between the logarithms of the base-flow measurements at the low-
flow site and the same-day mean streamflows at the gaging station is the same as the true relation
between the logarithms of the respective annual low streamflows.

2. The relation between the logarithms of the annual low streamflows is the same as the relation
between the logarithms of the 7-day low streamflows.

3. The time-sampling error in the 7-day low streamflow that is used to enter the regression equation is
independent of the variation in the base-flow measurements used to define the equation.

4. The logarithms of the measured streamflows at the ungaged site and the same-day mean streamflows
at the gaging station follow a bivariate normal distribution.

5. The M measurements made at the partial-record site are statistically independent estimates of the
base-flow relation.

Hardison and Moss (1972) noted that the first four assumptions appeared to be reasonable under the
conditions in which application of equation 1 was intended. They also noted that criteria could be applied
for using only those measurements that can be reasonably assumed to be independent to define the relation,
thereby, satisfying assumption 5. The criterion usually applied is that the base-flow measurements used in
the relation be separated by significant storms (Stedinger and Thomas, 1985). Measurements of low flow at
sites in Massachusetts generally have satisfied that criterion.

For this study, Hardison and Moss’ equation was modified to obtain variances of estimates of August
median streamflows determined from MOVE.1 equations. The modified equation, as with Hardison and
Moss’ original equation, does not take into account the additional variance from measurement errors at the
LFPRs and errors in the daily streamflow records at the streamflow-gaging stations used in the relation. To
apply the modified equation, assumption 2 above is not needed and assumptions 1 and 3 are restated as:

1. The lower end of the true relation between the logarithms of the base-flow measurements at the LFPR
and the same-day mean streamflows at the gaging station is the same as the true relation between
the logarithms of the August daily mean streamflows at the stations.

3. The time-sampling error in the August median streamflow that is used to enter the regression equation
is independent of the variation in the base-flow measurements used to define the equation.

The modified equation is

Vv 2 SE 2
_ Y 1 M AG ( M) 2
Vau = M[1+M—3+M—3+( sB,G} M—3]+b Vig (2)

where:
Vv is the variance of the estimated August median streamflow at the ungaged site, in log units;
V4G is the variance of the August daily mean streamflows at the gaging station, in log units;

Vg is the variance of the MOVE.! or graphical relation between the concurrent discharges, determined
by summing the squares of the differences between the logarithms-base 10 of the measured
discharges and the corresponding values from the relation, then dividing by the quantity M-2;

M is the number of base-flow measurements;

SE, ¢ is the standard error of the August daily mean streamflows, in log units, at the gaging station, which
equals the square root of V4 .
spg 1s the standard deviation of the logarithms-base 10 of the daily mean discharges at the gaging
station concurrent with the low streamflow measurements made at the ungaged site;
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z is the number of standard deviation units between the mean of the logarithms-base 10 of the
same-day mean discharges at the gaging station and the logarithm-base 10 of the August median
streamflow at the gaging station; and

b is computed as r(sg (/sp ), Where r is the correlation coefficient between the low streamflow
measurements made at the ungaged site and the same-day mean discharges at the gaging station,
and sp y is the standard deviation of the logarithms-base 10 of the low streamflow measurements
made at the ungaged site.

For low-flow partial-record sites where estimates were obtained from relations with more than one
streamflow-gaging station, the individual estimates were weighted by their variances, determined from
equation 2, then the weighted estimates were averaged to obtain the minimum-variance estimate. A
weighted final variance (V) was determined for the estimate, and the standard error (SEf), in percent, of
the final estimate was obtained from the equation (Ries, 1994b, p. 19)

SE, = 100 Jexp (53018V,) — 1. 3)

The equivalent years of record also was computed for estimates of August median streamflow for the
LFPRs. The equivalent years of record is the length of time that a streamflow-gaging station would need to
be operated at the location of the LFPR to obtain an estimate of the August median streamflow with equal
accuracy. The equivalent years of record for LFPRs was computed from an equation developed by
combining equations 7, 8, and 9 in Hardison and Moss (1972), and solving for the number of years of
record. The resulting equation is:

2, 20,2

2002 42 53.0)2)(VR(1+22) b"R; SE, GJ

N, = | R, SE, ck /)| £ + .G |, (4)
v (T ~¢ (SB,G M K N

Ny is the equivalent years of record at the partial-record station;
N¢ is the years of record at the streamflow-gaging station used in the relation;
K is from equation 3 of Hardison and Moss (1972),

2 2
_ 2 1 M [SErg ( M ) ,
K = (1+z)/[1+M—3+M—3+[ SB,G) =3/’ )
k is from equation 9 of Hardison and Moss (1972),
2 (M-4 2,
k = Jr +(M_2)(I—r),and (6)

Ry is a correction factor that depends on the streamflow statistic being estimated. For the case of the
August median streamflow, Ry equals one.

All other variables in equation 4 are as previously defined. The value of Ry was determined by combining
the equation that appears in table 1 of Hardison and Moss (1972),

Ry = (SE; cIN) /1, ©)

where I, is the standard deviation of the logarithms of the annual low streamflows (in this case, it equals
the standard deviation of the August daily mean streamflows), with the equation
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1+ K212
SEp g = 1,)|— ®)

from Hardison (1969, p. D212) to obtain

R2

1+k22. )

In equations 8 and 9 above, kris the number of standard deviation units between the streamflow
statistic and the mean of the data from which it is computed. From assumption 4 above, the daily mean
streamflow values from which August median streamflows are computed are distributed log-normally.
Because the mean and median of a normal distribution are the same, and k7 for the mean is zero, R%is
always one for estimates of August median streamflows.

For LFPRs where estimates were obtained from relations with more than one streamflow-gaging
station, the individual calculations of equivalent years of record were weighted by the variances of the
estimated August median streamflows, determined from equation 2, then the individual weighted
equivalent years of record were averaged to obtain the final weighted equivalent years of record for the
LFPRs.

August median streamflows were determined for 96 streamflow-gaging stations and LFPRs, and
analyzed to determine variation in August median streamflows per square mile and to develop an equation
for predicting August median streamflows for ungaged sites in Massachusetts. Streamflows at all stations
included in the analyses were virtually unregulated during low streamflow periods. Thirty-seven of the
stations were streamflow-gaging stations, and 59 of them were LFPRs. Thirty-four of the streamflow-
gaging stations were in Massachusetts and three of them were in bordering States, but had more than two-
thirds of their drainage areas in Massachusetts. Two of the streamflow-gaging stations were in Rhode
Island and one was in Connecticut. Names and descriptions of the streamflow-gaging stations used in the
analyses are in table 1 (at back of report), along with names and descriptions for 14 other streamflow-
gaging stations that were not used in the analyses, but data for these stations were used to aid in estimating
August median streamflows for the LFPRs. All of the LFPRs were in Massachusetts. Names and
descriptions of the LFPRs are in table 2 (at back of report). Locations of all stations are shown in
figure 1.

The ABF policy of the USFWS states that “when inflow immediately upstream of a project falls
below the prescribed flow release, the outflow be made no less than the inflow” (U.S. Fish and Wildlife
Service, 1981). In effect, this policy requires that a project cease use of water whenever the streamflow
falls below the August median. Streamflows at or below the August median, occur by definition, during
one-half of all August days; however, streamflows below the August median commonly occur during other
months. To determine the effect of the ABF policy on a long-term average basis, the flow-duration
percentiles corresponding to the August median streamflow were determined for each streamflow-gaging
station and LFPR used in the regression analysis. The mean and the median of the flow-duration
percentiles were the same—the 84th percentile. Individual values ranged between the 80th and 89th
percentiles, and about 67 percent of the values were between the 82th and 85th percentile. Because, on
average, the August median flow for Massachusetts streams corresponds to the 84-percent duration
streamflow, projects affected by the ABF policy would be required to cease operations, on average,

16 percent all days, or 58 days in an average year.

Determining August Median Streamflows from Available Flow Data 7
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VARIATION IN AUGUST MEDIAN STREAMFLOWS

August median streamflows determined for the 96 stations were divided by their respective drainage
areas to determine the August median streamflow per square mile for each station. These medians were
ordered from highest to lowest, and minimum, maximum, and quartiles of the range of medians for all
stations were computed. The minimum August median streamflow was thus 0.040 (ft3/s)/mi2 at Dorchester
Brook near Brockton, Mass. (station 01107000), and the maximum was 0.768 (ft3/s)/mi2 at South Branch
Mill River near East Longmeadow, Mass. (station 01177360). August median streamflows were greater
than or equal to 0.356 (ft>/s)/mi” at one-quarter of the stations; less than 0.356 (ft*/s)/miZ and greater than
or equal to 0.246 (ft3/s)/mi2 at one-quarter of the stations; less than 0.246 (ft3/s)/mi2 and greater than or
equal to 0.175 (ft3/s)/mi? at one-quarter of the stations; and less than 0.175 (ftz’/s)/mi2 at one-quarter of the
stations.

The stations were divided into four groups based on the quartile in which their August median
streamflow per square mile fell. The stations were then mapped, with different-sized circles denoting the
groups, the smallest circle denoting stations with flows per square mile in the lowest quartile, and so forth
(fig. 2). No clearly defined patterns were readily apparent on the map. The circle sizes generally were not
grouped together, and large circles were adjacent to small circles. This indicated that local physical
features of the basins for the stations were more important than regional features, such as rainfall, in
controlling variation in August median streamflows. Some regional differences were apparent, however,
when the State was divided roughly in halves along the line denoting 72 degrees longitude (fig. 2). The
largest circles (largest quartile of the August median streamflow per square mile) occurred more than twice
as often in the western half of the State as in the eastern half, and the smallest circles (smallest quartile)
occurred more than twice as often in the eastern half of the State as in the western half. A chi-square test
for differences between the medians of two samples was done on the two groups of data (Statware, Inc,
1990, p. 3-45). This test showed a statistical difference at the 95-percent confidence level between the
median values of the two regions, with a p-value of 0.023, which means that there was a 2.3 percent
probability of incorrectly rejecting the null hypothesis that the medians of the two groups are equal. As
discussed in greater detail below and shown in figure 2, stations in the Southeast Coastal region were not
included in the spatial analysis.

The dividing line at 72 degrees longitude roughly coincides with the boundary separating basins that
drain to Massachusetts, Buzzards, and Narragansett Bays, with those that drain to Long Island Sound. A
chi-square test of medians of the August median streamflow per square mile was done on groups divided
between stations in basins that drain to Massachusetts, Buzzards, and Narragansett Bays, and stations that
drain to Long Island Sound. Only one station, Little River at Richardson, Mass., in the French River Basin,
was affected by the redefined grouping. This redefined grouping caused the p-level to increase to 0.039.
The French River Basin drains into the Quinebaug River Basin, which subsequently drains into the Thames
River Basin in Connecticut, where it ultimately drains into the far eastern extent of Long Island Sound. The
72-degree longitude line roughly bisects the Quinebaug River Basin in Massachusetts. Because basin
characteristics in the Massachusetts parts of the French and Quinebaug River Basins, and August median
streamflows per square mile for the two stations in these basins, are more similar to those of adjacent river
basins to the east than to those of adjacent river basins to the north and west, the French and Quinebaug
River Basins were included in the eastern group. This new grouping resulted in only one station, Stevens
Brook at Holland, Mass., in the Quinebaug River Basin, being moved from the western region to the
eastern region of the original grouping based on the 72-degree longitude line. The p-value for the test of
the medians of this grouping decreased to 0.014.

Variation in August Median Streamflows 9



‘sjesnyoessepy Ul suiseq JaAu Jofew /g
oy} pue suoifa) MOjWESIS 3Y) JO SBUBPUNOQ pue ‘sasAjeue ay) ul pasn suone)s 1o} ajiw arenbs Jad mojweans uelpaw snbny jo apnyubey g ainbi4

a10yg feIse0) ymos 'q

IoARy (inog owsd] L] Youazg 01
Ppue YuON & Ioqred ‘91 8neqouind) "¢
MW WL ‘LT [ei1se0) inog ‘I udoysmeys gl sadooty) '8
atoyg Aeg srey) 0 Amqpng pue SO "L
adoy Y pue 0IM pue PpI0ou0) °q MONIUUOD) '
. Keg nosueSeueN ‘97 pnowkop 0 19qessy e uojduruireq ‘g
” uoune], ‘¢g 1esuodaN q pioouo) | PISISOM ‘¥
' Aed sprezzng  “pT Susfp e FoRWLRN €1 PRIRQJ ‘€
(ez_ spuels] €7 J0qre vorsog ‘61 auosyoeg 71 smoresno ‘7
\ < popaded 7z [e1580D) YUON ‘81 enyseN ] uospny ‘|
- SNISVE ONINNV1d

sopad pue 9’0 O

“:30% 9SE°0 Ue SSI[ M 9HTO0 QO
12YomuvN SYTOUERSSA 01 SLI'0 O AdVANNOYG NISVEdNS --------
SLEQuemssT o AYVANNOL NISVE  ——me
a[ru arenbs 1od puosas rod
1997 21qO U[-MOTINVIILS NVIAd LSNONV AAVANNOL NOIDTY s
NOILLVNVIdXH
uot SHILINOT 05 0 000'SZ:1
_ . | " Lt L “ 1661° LS LY BUOZ ‘Bueld B1EIS SHesNYoeSSEW
1S STUN 05 o '®ePIEuBp Aening jeoibojosn 'S woy eseg
°
e, ww,l..bncm_ TV .
i EYaRY
/}Ar o .lm
o el ¢
w 5
SN
oy
P
\.‘: lf. }
qyi . \M\\?L L.

\&..g J
I

eyt °
Soweussisey

e L

,00, 12

10 August Median Streamflows in Massachusetts



The median of the August median streamflow for the 43 stations in the eastern region was
0.197 (ft3/s)/mi2, with a minimum of 0.040 (ft*/s)/mi? and a maximum of 0.595 (ft>/s)/mi2, whereas the
median for the 53 stations in the western region was 0.271 (ft3/s)/mi2, with a minimum of 0.056 (ft3/s)/mi2
and a maximum of 0.759 (ft3/s)/mi2. Because of the large range of the values in both regions (nearly 15-
fold in the eastern region and nearly 14-fold in the western region), there would be little confidence in use
of the regional median of the August median streamflow per square mile to estimate the value for a
selected ungaged site in the region. Use of regression equations that account for differences in the physical
characteristics of the ungaged basin as well as region differences would likely provide much better
estimates of August median streamflows than use of regional medians.

Reasons for differences in flow per unit area between the eastern and western regions are complex.
Normal annual precipitation in the western region of Massachusetts is about 47 in., whereas normal annual
precipitation in the eastern region is about 45 in. (U.S. Commerce Department, National Oceanographic
and Atmospheric Administration, 1994). A chi-square test showed that the approximate 2-inch difference
in normal annual precipitation between the regions was not statistically different, although a more dense
data network than currently exists in western Massachusetts might show greater differences in
precipitation because of orographic effects in mountainous areas. Other drainage basin characteristics
probably account for most of the differences between regions. Mean basin elevations and relief generally
are lower, and proportions of water bodies and wetlands are larger in drainage basins in the eastern region
than in the western region. Mean annual temperatures, as noted previously, are lower in the western region
than in the eastern region. The lower temperatures, combined with smaller areas of wetlands and water
bodies, and slightly larger annual precipitation, probably results in less evapotranspiration in the western
region and more water available at times of low streamflow.

Previous studies have shown that low streamflows per unit area generally are larger for streams with
larger percentages of stratified drift than streams with smaller percentages of stratified drift (Tasker, 1972;
Cervione and others, 1993; Risley, 1994; and Ries, 1994a, 1994b). The median percentage of stratified
drift for drainage areas for stations in the eastern region was 0.43, whereas the median percentage of
stratified drift for drainage areas in the western region was 0.21. Because percentages of stratified drift
generally are larger in eastern than in western Massachusetts, it may seem natural to assume that flows per
unit of drainage area in eastern Massachusetts should generally be larger than those in western
Massachusetts. However, August median streamflows per unit area of stratified drift were much lower in
the eastern region than in the western region. The median of the August median streamflow per unit area of
stratified drift in the eastern region was 0.62 (ft3/s)/mi2, whereas the median in the western region was 3.06
(ft3/s)/mi%. Much higher relief in the western region than in the eastern region probably explains most of
the differences in streamflows per unit area of stratified drift because relief is the driving force that causes
ground water to flow from the stratified drift to streams.

As noted above, stations in the eastern part of the Buzzards Bay Basin, the southern part of the South
Coastal Shore Basin, Cape Cod, and the Islands were not included in the above analysis. Flows for most
streams in this area, denoted the Southeast Coastal region, are highly affected by regulation, diversions, or
the effects of cranberry bogs; therefore, streamflow characteristics for these streams are not readily
transferrable to other streams. In addition, the region is underlain entirely by stratified-drift sediments,
which are mostly coarse grained. Surface-water drainage boundaries often are not coincident with
contributing areas of ground water for streams in the area. Because of these reasons, uncertainty in
determinations of August median streamflow per square mile of drainage area in this region is much
greater than in other parts of the State.

Most precipitation on the Southeast Coastal region infiltrates through the coarse-grained stratified
drift to the ground-water system. When compared per unit of drainage area, streamflows in the Southeast
Coastal region during heavy rains tend to be lower than streamflows in the other regions of Massachusetts,
and streamflows during dry periods tend to be higher. As a result, August median streamflows per unit
area probably are higher in general in the Southeast Coastal region than in the rest of the State.

Variation in August Median Streamflows 11



For example, the August median streamflow for the Quashnet River at Waquoit Village, Mass. (station
011058837 in fig. 1) was 14.0 ft¥s on the basis of 6 years of record. The surface drainage area for the
station is 2.58 miZ, but the ground-water contributing area is about 5.0 mi? (Barlow and Hess, 1993, p. 4).
August median streamflow per square mile is either 5.43 (ft3/s)/mi2 if the surface boundary is used, or
2.80 (ft%/s)/mi? if the ground-water boundary is used. Streamflows at this station are not highly regulated,
but the station was not included in the analysis because streamflow per unit area from the Quashnet River
is much greater than for any other station in the analysis. Inclusion of the Quashnet River in the analysis
would likely cause overestimation of streamflows per unit area outside of the Southeast Coastal region. It is
unknown whether the streamflow per square mile of drainage area for the Quashnet River is representative
of the rest of the Southeast Coastal region.

DETERMINING AUGUST MEDIAN STREAMFLOWS WHERE FLOW DATA ARE NOT
AVAILABLE

An equation was developed for use in estimating the August median streamflow for sites where-
streamflow data are not available. The equation was developed by use of multiple-regression analysis with
data for the 37 streamflow-gaging stations and 59 LFPRs listed in tables 1 and 2. The August median
streamflow for each station was used as the dependent variable in the regression analysis, and various
physical characteristics of the drainage areas associated with the stations were used as the independent
variables. Also included in the regression analysis was an indicator variable for region, with stations in the
eastern region given a value of 0, and stations in the western region given a value of 1. August median
streamflows, physical characteristics for the stations, and regions are listed in table 3 (at the back of report).

Data Base

The period of record for the 37 gaging stations used in the analysis was from 2 to 81 years (table 1),
with a median of 27 years. Data for the streamflow-gaging stations were analyzed through climatic year
1994! the most current year available when the analysis was done. Eight to 36 streamflow measurements
were available for estimating August median streamflows for the 59 low-flow partial record sites (table 2),
with a median of 16 measurements. The number of streamflow measurements ranged from 8 to 11 at one-
quarter of the low-flow partial record sites, 12 to 16 at one-quarter of the sites, 17 to 22 at one-quarter of
the sites, and 23 to 36 at one-quarter of the sites. Standard errors of the estimates of August median
streamflow for the LFPRs used in the regression analyses ranged from 3.82 to 18.33 percent, with a median
standard error of 8.71 percent. As the estimated August median streamflows for the low-flow partial-record
sites decreased, the range of standard errors (in percent) increased. For example, standard errors for the 16
sites where estimated August median streamflows were greater than or equal to 5 ft/s ranged from 4.92 to
11.03 percent, whereas standard errors for the 14 sites where estimated August median streamflows were
less than 1 ft%/s ranged from 5.75 to 18.33 percent. Equivalent years of record for the LFPRs ranged from
0.3 to 4.6 years, with a median of 1.3 years.

Fewer unregulated gaging stations were available for use in the regression analysis in the eastern
region than in the western region because drainage basins and water resources are much more heavily
developed in the eastern region than in the western region. The data base included 11 gaging stations and
32 LFPRs in the eastern region, and 26 gaging stations and 27 LFPRs in the western region. Drainage areas
for stations in the eastern region generally were smaller than those in the western region, with a median of
7.23 mi? in the eastern region and 12.7 mi? in the western region.

VA climatic year begins April 1 of the year indicated, and ends March 31 of the following year.
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Physical characteristics for the stations used in the analysis were determined from digital data bases
by use of a geographic information system (GIS). Characteristics determined for the analysis include
drainage area; area of stratified drift; total length of streams; maximum, minimum, and mean basin
elevation; maximum, minimum, and mean elevation in stratified drift; and mean basin slope. Some of these
characteristics were combined to determine additional characteristics for use in the analysis. Methods used
to measure the above characteristics and to combine them to determine additional characteristics are the
same as those explained in Ries (1994a, 1994b).

Drainage areas for some stations used in the regression analysis did not contain stratified-drift
deposits. Because logarithms of the measured basin characteristics were used in the regression analysis, a
constant of 0.1 was added to the stratified-drift areas. This constant also was added to areas of stratified
drift per unit of total stream length (DR7/TST). The constant was chosen because its value is small with
respect to the areas of stratified drift measured for most sites. Sensitivity tests done with constants ranging
from 0.001 to 1.0 showed little effect on the regression results. The unadjusted stratified drift values are
shown in table 3.

Regression Analysis

Weighted-least squares multiple-regression analysis (WLS) was used to determine the equation for
predicting August median streamflow. Regression analysis procedures followed, diagnostic checks
performed, and adjustment of estimates obtained from the equation for transformation bias, are the same as
those described in Ries (1994a, p. 32-34). The general form of the equation is

logY; = by+blogX, ;+b,logX, ;+...+b logX, ,+bR +€,, (10)

where log signifies the base-10 logarithm. After retransforming by taking antilogs, the algebraically
equivalent form is obtained

RCH CORES ()
v, =10\ x, % ). X, L1077 107, (11)

Y; is the dependent variable (in this case the August median streamflow) for site i;
X ;to X, ; are the values of the n independent variables (basin characteristics) for the site;
R; is the indicator variable for the region in which the site is located, with values of zero or one;
by to b, are the n regression model coefficients;
by is the coefficient for the indicator variable; and
€; is the residual error for the site.

where

Data for each streamflow-gaging station used in the regression analysis was weighted by its number
of years of record. Data for each LFPR used in the analysis was weighted by its equivalent years of record,
determined from equation 4. Actual weights used in the analysis were centered by subtracting the years
of record for each station from the mean years of record for all stations, then dividing the result by the
mean value. Additional weighting of the stations used in the regression analysis for non-constant variance
of the regression residuals (heteroscedasticity) was not necessary. The weights also do not compensate for
cross (spatial) correlation between the streamflows for the stations used in the regression analysis.
Although generalized-least-squares regression analysis (GLS) could correct for cross correlation, it was
not used for this study because potential gains in model precision did not justify the added effort for the
GLS analysis. Vogel and Kroll (1990) used GLS to develop a regression equation to predict 7-day 10-year
low flows for Massachusetts streams, and found that the regression model parameter estimates were nearly
identical, and the decrease in prediction errors was marginal compared to a model developed by use of
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ordinary-least-squares regression analysis, which does not correct for differences in record length or cross-
correlation. Cross correlation in Vogel and Kroll’s model was 0.35. Stedinger and Tasker (1985) concluded
that gains in model precision when GLS is used instead of WLS increase with decreasing standard error of
estimate and increasing cross correlation. WLS and GLS models with large standard errors and low cross
correlations were nearly identical. Cross correlation was expected to be low and standard error was
expected to be moderate for the equation to predict August median streamflows on the basis of results of
Vogel and Kroll (1990) and Ries (1994a and 1994b).

The all-possible-regressions selection procedure ALLREG of the Statit statistical computer software
was used to select subsets of the independent variables for inclusion in the final regression equation
(Statware, Inc., 1990). Minimization of Mallow’s Cp was used as the selection criterion in the all-possible-
regressions analysis (Neter and others, 1985, p. 421-429). The final model was selected on the basis of the
following statistical parameters: (1) Mallow’s Cp statistic; (2) Radjz, the percentage of the variation in the
dependent variable explained by the independent variables, adjusted for the number of stations and
independent variables used in the regression analysis; (3) the mean square error (MSE), the sample model
error variance of the estimates for the stations included in the analysis; and (4) the PRESS statistic, an
estimate of the prediction error sum of squares (Montgomery and Peck, 1982, p. 255). Diagnostic checks
were done to test for model adequacy and violations of assumptions for regression analysis. The
independent variables selected for the final model had to be statistically significant, and the signs and
magnitudes of the coefficients had to be hydrologically reasonable.

Duan’s (1983) “smearing estimate” of the mean residual error was used to reduce the bias that results
when the final equation is retransformed from the logarithmic form (eq. 10) to the form that allows the
streamflow estimates to be computed in units of cubic feet per second (eq. 11). The logarithmic equation
provides estimates of the mean response of the dependent variable to the values of the independent
variables for the site where the estimate is needed. The retransformed equation provides estimates of the
median response, which tend to be lower for streamflow data. The smearing estimate bias correction factor
(BCF) was needed to obtain unbiased estimates of the mean response in units of cubic feet per second. The
BCF was applied by replacing the error term of equation 2 with the mean error of the retransformed
residuals, yielding

€
() (). () 10 2100 (12)
Y,- = 10 Xl,i X2,i Xn,i 10 ——Iv———

where N is the number of stations used in the regression analysis. The smearing estimate is the last factor in
parentheses in equation 12. It is determined by summing the antilogs of the residual errors from the regres-
sion analysis and then dividing the sum by the number of stations used in the regression analysis. Estimates
obtained from the retransformed regression equation are multiplied by this value to provide reasonably
unbiased estimates of the mean response of the dependent variable.

Equation to Predict August Median Streamflows

Basin characteristics for the best equation for predicting August median streamflows (Q,4) in
Massachusetts were drainage area (DAREA), the area of stratified drift per unit of total stream length plus a
constant of 0.1 (DRT/TST), and the difference between the mean basin elevation and the minimum basin
(outlet) elevation (GWHEAD) as the independent variables, with the hydrologic region (REGION) used as
an indicator variable. The equation is
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0.7204
0, = 0.1285DAREA" ™ GWHEAD*®® (DRT § TST) [V 1353REGION

(13)
The smearing estimate BCF, 1.0958, is included in the first coefficient in equation 13. The R,,djz for equa-
tion 13 is 95.2 percent, with MSE (model error variance, YZ) equal to 0.02217 log units, and PRESS equal
to 2.3313 log units. Another indication of the precision of the model is provided in figure 3, a plot of the
observed August median streamflows for the stations used in the regression analysis against the estimates
obtained from equation 13, corrected for transformation bias.

The standard error of regression for equation 13 is equal to 35.3 percent, and the standard error of
prediction is equal to 38.1 percent. The standard error of regression is a measure of the precision with
which the regression equation estimates the August median streamflow for the stations used in the analysis.
The standard error of prediction indicates the precision with which estimates can be made for sites not used
in the regression analysis. About 68 percent of streamflows estimated by use of the equation will have
errors less than or equal to the standard errors noted.

Stations in the eastern region were given a REGION value of 0 in equation 13, and stations in the
western region were given a value of 1. As a result, the last term in the equation becomes 1.0 for stations in
the eastern region, and 1.3809 for stations in the western region. Equation 13 can be simplified by
combining the intercept constant at the beginning of the right side of the equation with the constant for the
appropriate region and the BCF constant, and restating equation 13 separately for the two regions. The
equation for the eastern region becomes

0.7204
0, ; = 0.1285DAREA ' GWHEAD"**® (DRT§ TST) | (14)

whereas the equation for the western region becomes

1.0687 0.2602

0.7204
Q4w = 0.1754DAREA GWHEAD (DRT § TST) . (15)

Prediction intervals at the 90-percent confidence level can be calculated for estimates obtained
from the regression equations above. Prediction intervals indicate the uncertainty inherent in use of
the equations. Tasker and Driver (1988) have shown that a 100(1-o) prediction interval for the true
value of a dependent variable obtained by use of regression equations corrected for bias can be
computed by

Hgee)<ev<r(ade). 0o

where Q4 is the predicted August median streamflow, BCF is the bias correction factor for the equation
used to obtain @4, and T is computed as explained below.

A row vector, x;, of logarithms of the basin characteristics for site i is augmented by a 1 as the first
element to obtain x; = [1, log;o(DAREA), log;o((GWHEAD), logo(DRT/TST), REGION)] for the site. The
standard error of prediction for site i is then estimated as

2 ,. 05
S‘. = ['Y +in.xi] , (17)
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Figure 3. Observed August median streamflows for the stations used in the regression analysis plotted against
values estimated by use of equation 13, corrected for transformation bias.

where 72 is the model error variance (0.02229), U is the covariance matrix for the regression coefficients

0.015912 0.001154 0.007014 0.003452 0.004187 |
0.001154 0.001821 —-0.002388 —0.002816 0.000371
U = |0.007014 -0.002388 0.006292 0.005200 —0.002204 (18
0.003452 -0.002816 0.005200 0.018074 0.001617
0004187 0.000371 -0.002204 0.001617 0.002880 |

and x;” is the transpose of x; (Ludwig and Tasker, 1993). The value for T is then computed as

T = 10[1.662Si] , 19)

where 1,662 is the critical value from the ¢-distribution for a regression equation with 96 sites, 4 basin char-
acteristics (including the indicator variable), and a 90-percent prediction interval (Iman and Conover,
1983).

The procedure necessary to obtain estimates and prediction intervals is explained by an example
computation for an ungaged site on the Assabet River at Northborough (station 01096640, latitude
42°18’55”, longitude 71°3805”). First, the necessary basin characteristics for the site are measured from
the various GIS data layers. Values for drainage area (DAREA), area of stratified drift, total length of
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streams, mean basin altitude, and minimum basin altitude, are 19.7 miz, 6.99 miz, 40.6 mi, 404 ft, and
259 ft, respectively. GWHEAD is computed by subtracting the minimum basin altitude from the mean
basin altitude, to obtain a value of 145 ft. DRT/TST is computed by dividing the stratified-drift area by the
total stream length, and adding a constant of 0.1, to obtain a value of 0.2722 mi. Because the site is in the
eastern region (fig. 2), the value for REGION in the equation is 0; therefore, equation 14 is used to compute

the point estimate of the August median streamflow. Substituting the measured basin characteristics for the
site into equation 14 yields

1.0687 0.2602

g, = 0.1285(19.7) (145) 0.7204

(0.2722) "7 = 444 5.

To determine a 90-percent prediction interval for this estimate, the x; vector is
x; = {1, l°g10( 19.7) l°g10(145) , log,(0.2722), 0},

the model error variance is YZ =0.02217, and the covariance matrix, U, is obtained from equation 18.
The standard error of prediction for the site, computed from equation 17, is

S; = [0.02217 +0.000953] *° = 0.15206,
and from equation 19,

[1.662 (0.15206) ]

T=10 = 1.78947.

Substituting the values above into equation 16, the 90-percent prediction interval for the site is

1 4.44 ) ( 444 )
1.78947(1.0958 <0, < 178947\ 15555 )

or226<Q,<725.

The 90-percent prediction interval is interpreted as follows: If 10 sites had the same basin characteristics as
those for the Assabet River at Northborough, the true August median streamflow for nine of the sites

(90 percent) would be between 2.26 and 7.25 ft3/s; thus, assurance is 90 percent that the true value is in the
given interval.

Equation 13, and thus equations 14 and 15, can be used to provide estimates of the August median
streamflow under natural conditions for sites on streams in most of Massachusetts. Adjustments would
need to be made for regulations and diversions to obtain estimates of the true flows for sites on streams
where these activities are present. The measures of model adequacy provided above for equations 13 to 15,
and the prediction intervals calculated by use of equations 16 to 19, indicate potential errors that can be
expected when basin characteristics are within the ranges of those for the stations used in the regression
analysis. Drainage areas (DAREA) for stations used in the regression analysis ranged from 1.57 to 150 miZ.
Values of GWHEAD ranged from 5 to 1,036 ft, and values of DRT/TST ranged from 0.1 to 0.821 mi.
Estimates of August median streamflows obtained by use of the regression equations for sites on streams
with basin characteristics outside the above-noted ranges could have substantial errors. The regression
equations are not applicable in the Southeast Coastal region (fig. 2).

Determining August Median Streamflows Where Flow Data Are Not Available 17



SUMMARY

August median streamflows were determined for 96 stations with all or most of their drainage areas
in Massachusetts, including 37 streamflow-gaging stations and 59 low-flow partial-record stations
(LFPRs). Periods of record for the streamflow-gaging stations ranged from 2 to 81 years, with a median
record length of 27 years. Flows at the LFPRs were measured from 8 to 36 times, with a median of 16
measurements. Streamflows during August occur under virtually natural conditions at the 96 stations.

August median streamflows for gaging stations used in this study were calculated from the daily
mean streamflows for all complete Augusts for the periods of record for the stations through climatic year
1994, whereas August median streamflows for gaging stations used in the study by the U.S. Fish and
Wildlife Service (USFWS) to develop the Aquatic Base Flow (ABF) policy were determined by
calculating the median of all August monthly mean streamflows for the periods of record. This difference
in the method of calculating August median streamflows resulted in calculated medians for this study being
lower than those calculated for the same stations by the USFWS.

Estimated August median streamflows for the LFPRs used in this study were determined by
correlation of measured streamflows with same-day mean streamflows for selected gaging stations.
Usually, measured streamflows for LFPRs were correlated to daily mean streamflows from more than one
gaging station to obtain multiple estimates of the August median streamflow for the LFPRs. A method was
devised whereby estimates obtained from the multiple correlations could be combined to obtain the final
minimum-variance estimate for the station. Standard errors of the estimated August median streamflows
for the LFPRs ranged from 3.82 to 18.33 percent, with a median standard error of 8.71 percent. Equivalent
years of record for the estimates ranged from 0.3 years to 4.6 years, with a median of 1.3 years.

Water users affected by the ABF policy can be required to cease use of water when natural
streamflows are less than the August median streamflow standard. Flow-duration percentiles corresponding
to the August median streamflow were determined for each gaging station and LFPRs used in the analysis
to determine the long-term operational effect of the ABF policy on projects subject to the policy. On
average, the August median flow for Massachusetts streams corresponds to the 84-percent duration
streamflow, with values ranging between the 80 and 89 flow-duration percentiles. Because of this, on
average, water users subject to the policy could be required to cease use of water on 16 percent of all days,
or 58 days in an average year.

August median streamflows per square mile determined for the 96 stations used in this study were
lower than those determined for the stations used by the USFWS to develop the ABF policy, primarily due
to differences in the methods used to determine the August median streamflows. The ABF policy
recommends use of 0.5 (ft3/s)/mi2 as the minimum flow for maintenance of habitat for biota when the
actual August median streamflow per square mile for a site cannot be determined from available data.
August median streamflows determined for stations used in this study ranged from 0.040 to
0.759 (ft3/s)/mi2. The median August median streamflow for the stations, 0.246 (ft3/s)/mi2, was less than
one-half the amount recommended in the ABF policy.

Although local physical features of the basins for the stations appeared to be more important than
regional features in controlling variation in August median streamflows, a map of August median
streamflows per square mile showed that the values were higher in western Massachusetts than in eastern
Massachusetts. Statistical tests were used to divide the State into western and eastern regions for further
analysis. The median of the August median streamflow for stations in the western region was
0.271 (ft3/s)/mi2, and the median in the eastern region was 0.197 (ft3/s)/mi2. August median streamflows
in the eastern and western regions each had about a 15-fold spread, indicating that use of a single regional
value to estimate streamflows per square mile for individual ungaged sites likely will result in substantial
errors. Data were insufficient for analysis in the southeast coastal region of Massachusetts, which
comprises almost all of the southern half of the South Coastal Basin, the eastern one-third of the Buzzards
Bay Basin, Cape Cod, and the islands of Martha’s Vineyard and Nantucket.
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An equation was developed for use in estimating natural August median streamflows for ungaged
sites on streams in Massachusetts from data for the 96 stations where August median streamflows were
determined. The equation was developed by use of weighted-least-squares regression analysis, with the
actual or equivalent years of record used as the weighting factor for each station in the analysis. August
median streamflow was the dependent variable in the regression analysis and selected basin characteristics
measured from digital data bases by use of GIS were the independent variables.

The basin characteristics that provided the best equation for predicting August median streamflows
were drainage area, area of stratified drift per unit of total stream length plus 0.1, the difference in elevation
between mean and minimum basin elevations, and the streamflow region. The basin characteristics were
each positively correlated with August median streamflows. The equation explains 95.2 percent of the
variation in August median streamflows for the stations used in the analysis. The standard error of
regression for the equation is 35.3 percent, and the standard error of prediction is 38.1 percent. The
equation is applicable throughout Massachusetts, except in the southeast coastal region, and where basin
characteristics for sites where estimates are desired are outside the ranges of those for the stations used in
the analysis. Where these conditions are met, 90-percent prediction intervals can be calculated for
individual estimates obtained from the equation. August median streamflows and prediction intervals
estimated by use of the equations in this report could have substantial errors for sites on streams with basin
characteristics outside the ranges noted above.
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Table 1. Descriptions of streamflow-gaging stations used in the regression analysis and for correlation with low-flow
partial record stations

[Periods of record shown are based on climatic years, which begin on April 1 of the year noted; USGS, U.S. Geological Survey.}

USGS .
station La:i?l:de Lonog.lt-ude Station name

number

Period of

Remarks
record e

Gaging stations used in the regression analysis and for correlation with low-flow partial-record stations

01096000 423803 713930 Squannacook River near West Groton, 1950-present Occasional regulation by mill

Mass. upstream
01096910 422704 711343 Boulder Brook at East Bolton, Mass. 1972-82 --
01097300 423039 712425 Nashoba Brook near Acton, Mass. 1964-present --
01100700 424841 710159 East Meadow Brook near Haverhill, Mass. 1963-73 --
01101000 424510 705646 Parker River at Byfield, Mass. 1946-present Occasional regulation by mill
and ponds
01105600 421125 705643 Old Swamp River near South Weymouth, 1966-present --
Mass.
01106000 413330 710747 Adamsville Brook at Adamsville, R.I. 1941-77 -~
01107000 420341 710359 Dorchester Brook near Brockton, Mass. 1963-73 --
01109200 415246 711518 West Branch Palmer River near 1962-73 --
Rehoboth, Mass.
01111200 420617 713628 West River at West Hill Dam near 1962-89 Flood-control dam upstream
Uxbridge, Mass.
01111300 415852 714111 Nipmuc River near Harrisville, R.1. 1964-90 --
01162500 424057 720656 Priest Brook near Winchendon, Mass. 1919-present No daily record during August
1936
01165500 423610 722136 Moss Brook at Wendell Depot, Mass. 1917-81
01166105 423539 722141 Whetstone Brook at Wendell Depot, Mass. 1986-90 --
01169000 423818 724332 North River at Shattuckville, Mass. 1940-present Occasional small diurnal fluctu-
ation
01169900 423231 724139 South River near Conway, Mass. 1967-present Small diurnal fluctuation since
1982
01170100 424212 724016 Green River near Colrain, Mass. 1969-present --
01171500 421905 723921 Mill River at Northampton, Mass. 1940-present --
01171800 421809 724116 Bassett Brook near Northampton, Mass.  1963-73 --
01173260 422352 720851 Moose Brook near Barre, Mass. 1963-73 -
01174000 422842 722005 Hop Brook near New Salem, Mass. 1948-81 --
01174050 422849 721327 East Branch Fever River near Petersham,  1984-85 -~
Mass.
01174565 422718 722256 West Branch Swift River at Shutesbury, 1984-85 --
Mass.
01174900 422008 722212 Cadwell Creek near Belchertown, Mass.  1962-present --
01175670 421554 720019 Sevenmile River near Spencer, Mass. 1961-present Occasional regulation by ponds
upstream
01176000 421056 721551 Quaboag River at West Brimfield, Mass.  1913-present Flood-retarding reservoirs
upstream
01180000 421727 725215 Sykes Brook at Knightville, Mass. 1946-72 -
01180500 421531 725223 Middle Branch Westfield River at 1910-89 Data for August 1965-6 not used
Goss Heights, Mass. due to construction of flood-

control reservoir upstream.
01180800 421549 730248 Walker Brook near Becket Center, Mass.  1963-76 --

01181000 421414 725346 West Branch Westfield River at 1936-present  --
Huntington, Mass.

01187400 420203 725549 Valley Brook near West Hartland, Conn.  1941-71 --

01197015 423112 731348 Town Brook at Bridge Street, 1980-82 -
Lanesborough, Mass.
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Table 1. Descriptions of streamflow-gaging stations used in the regression analysis and for correlation with low-flow
partial record stations—Continued

USGS
station
number

Latitude Longitude

om

otm

Station name

Period of
record

Remarks

Gaging stations used in the regression analysis and for correlation with low-flow partial-record stations—Continued

01197300
01198000
01331400
01332000

01333000

422059
421131
423520
424208

424232

731756
732328
73 06 48
730537

7311 50

Marsh Brook at Lenox, Mass.

Green River near Great Barrington, Mass.

Dry Brook near Adams, Mass.

North Branch Hoosic River at
North Adams, Mass.

Green River at Williamstown, Mass.

1963-73
1952-70
1963-73
1932-89

1950-present

Infrequent small diurnal
fluctuation

Infrequent small diurnal
fluctuation

Gaging stations used for correlation with low-flow partial-record stations, but not used in the regression analysis.

01073000
01105730

01105870

011058837

01109000

01109403
01118000
01121000

01184490
01187300

01188000
01197000

01198500
01199050

4308 55
4206 02

415927

413532

4156 51

414951

412953

415037

41 54 50
420214

414710
422810

420126
4156 32

70 57 56
70 49 23

7044 03

703030

711038

71 21 06

714301

721010

723300
725622

72 5755
7311 49

732032
732329

Oyster River near Durham, N.H.

Indian Head River at Hanover, Mass.

Jones River at Kingston, Mass.

Quashnet River at Waquoit Village, Mass.

Wading River near Norton, Mass.

Ten Mile River at East Providence, R.I.

Wood River at Hope Valley, R.1.

Mount Hope River near Warrenville, Conn.
Broad Brook at Broad Brook, Conn.
Hubbard River near West Hartland, Conn.

Burlington Brook near Burlington, Conn.

East Branch Housatonic River at
Coltsville, Mass.

Blackberry Brook at Canaan, Conn.
Salmon Creek at Lime Rock, Conn.

1935-present
1967-present

1967-present

1989-present

1926-present

1987-present

1942-present

194 1-present
1962-present

1939-55,
1957-
present

1932-present
1936-present

1950-71
1962-present

Some regulation by mills and
ponds

Regulation by pond and cran-
berry bogs. Ground- and sur-
face- water drainage
boundaries are not coincident.

Some regulation by cranberry
bog. Ground- and surface-
water drainage boundaries
are not coincident.

Regulation by lakes and ponds.
Diversions to and from basin
for municipal supplies.

Regulations and diversions from
reservior.

Seasonal regulation by pond
since 1968. Regulation at low
flow until 1952.

Occasional regulation by ponds.

Regulation by reservoir and mill.

Flow regulated by powerplants
and reservoir. Diversion for
municipal supply.
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24 August Median Streamflows in Massachusetts
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26 August Median Streamflows in Massachusetts
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